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Complex Resonance and Radiation of Hemispherical
Dielectric-Resonator Antenna with
a Concentric Conductor

Kwok Wa Leung Member, IEEE

Abstract—The probe-fed hemispherical dielectric-resonator an- the limit of £,, — 1 the present theory is reduced to the solu-
tenna (DRA) Wit_h a concentric cond_uctor is studied theoretically tion of a wire in the presence of a conducting sphere [12], [13],
in this paper. Using the mode-matching method, the exact Green's \yhjch is useful to the electromagnetic compatibility (EMC) en-
functions for evaluation of the inputimpedance and radiation pat- gineer. Practically, to avoid any possible air gaps between the

terns are found, with the functions presented in computationally ef- . .
ficient forms. The moment method is used to determine the probe conductor and DRA, the inner DRA surface can be coated with

current and, hence, the input impedance as well as the radiation @ conducting material, e.g., silver epoxy or adhesive conducting
patterns. The results are verified by special cases available in the tape. Since the embedding solid conductor is, in fact, unneces-
literature. In this paper, the effects of the conductor radius, dielec- sary, the present DRA can be easily obtained from an air-gap
tric constant, probe length, and probe displacement on the input pRA_ |t should be mentioned that as DRAs of different shapes

impedance are investigated. The theory is very general and, by o . L
taking appropriate limits, can be used to study the solid DRA and show a very similar behavior, the characteristics of others (e.g.,

the conductor-loaded wire antenna. To aid the DRA design engi- "€ctangular and cylindrical DRAs) can be anticipated from the
neer, the TE,,-mode characteristic equation of the DRA is also knowledge of the hemispherical version.
studied, from which the simple formulas for the resonant frequency In this paper, the mode-matching method [6] is used to de-

and Q-factor are obtained. rive the characteristic equation and exact antenna Green'’s func-
Index Terms—Dielectric antennas, mode-matching methods, tion of the DRA. From the former, the source-free resonant fre-
moment methods, resonance. guency and?-factor can be determined. To aid the engineer

in designing the DRA, two simple curve-fitting formulas are
given so that the resonant frequency @ndiactor can be deter-
mined quickly and easily. The effects of the dielectric constant
INCE the work reported by Longt al. [1], the dielec- - and conductor radius on the complex resonant frequency are
ric-resonator antenna (DRA) has been studied extensivelydied, and the results are compared with those of the solid di-
[2]-[11]. The DRA offers a number of advantages such as igectric sphere [14] and of the air-gap DRA. In this paper, the
small size and low cost. Moreover, as compared with the Ntdiation characteristics of the DRA are also investigated. The
crostrip antenna, the DRA has a much wider bandwigthd%  Green'’s function technique and the moment method (MoM) are
for dielectric constant,. ~ 10). used to find the probe current and, hence, the input impedance.
Among various shapes of the DRA, the hemispherical o e results are compared with those of the previous solid-DRA
has the simplest structure for the analytical analysis [6], [dase [6]. The effects of the conductor radius, dielectric constant,
Recently, an air gap has been introduced to the hemispherigabe length, and probe displacement on the input impedance
DRA to increase the antenna bandwidth [8]. Replacing the gife studied. In addition, the expressions of the radiation fields
gap with a concentric conductor is of interest [9]. In this papesre presented. The solution takes all higher order modes into
the broadsid&’E+;; mode of a probe-fed hemispherical DRAgccount and, thus, can be used to calculate the cross-polarized
with a concentric conductor (Fig. 1) is studied theoretically, arffblds. As the rigorous far-field expressions have not been re-
the results are verified by the limiting cases available in the ligorted explicitly in the literature [6], [7] even for the solid DRA
erature. Similar to the previous air-gap DRA, the new structug@se, the results are very useful for the DRA design engineer.
provides a wider bandwidth and a higher resonant frequencyin Section II, the formulation of the problem using the mode-
than the solid one. As will be shown later, the new structuffatching method is presented. The results of the complex reso-
provides even a wider frequency range than the air-gap versigant frequency, input impedance, and radiation patterns will be
Although a wider bandwidth with a higher resonant frequen(yven in Section I1I. Section IV concludes the study.
can also be achieved by using materials of lower dielectric con-
stant, the new structure does provide an alternative for the DRA
design engineer. The present theory is more general than the pre- Il. THEORY
vious one [6], [7], as the latter can be obtained from the former
by reducing the conductor radius to zero. Moreover, by taki

. INTRODUCTION

The antenna configuration is shown in Fig. 1, where the
'BRA of outer radius: and inner radius is fed by a probe of
lengthl, displacemenk, and radius-, . The outer radius of the
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Fig. 1. Configuration of the hemispherical DRA with a concentric conductor. drwe 7 “— n(n+1) 0600
(a) Perspective view. (b) Side view. [ J (kr)+ f I:I’(Q)(k )} (4b)
s lendp(BT) + il T
andr (', ¢', ¢'), respectively. To begin with, image theory isinvos ¢ = cos cos ¢ + sin fsin 6’ cos(¢ — ¢) (4c)

voked to remove the ground plane, and the equivalence principle

is used to replace the coaxial aperture by an equivalent magneti¢; p — |7 — 7| is the distance between the field and source
frill current. The equivalent problemis a dipole embedded insi%int& The various symbols were defined in [6], whereas the
a dielectric sphere with a concentric spherical conductor. Fooqa| coefficients are given in Appendix A. It is interesting to
tackle the problem, the-directed currentis firstresolved into thegyserve that as— 0. the homogeneous solutigty; converges
¢-andr-directed components. The potential Green’s function§ tpat given in [6, eq. (19b)], which is to be expected. When
of the components are then found separately. To enhance the , | ‘the explicit Green’s function for a wire in the presence
computational efficiency, the Green’s function are divided intgs 5 spherical conductor is obtained. If, in additien- 0, the
their particular and homogeneous parts [6]. Since there #HEmogeneous solutiol; vanishes and;g“z is reduced to the

two boundaries (DR-air and DR—conductor interfaces) 10 B&een's function of an electric dipole radiating in free space [see
matched, two spherical Bessel functions are required inside tq%)] as expected.

dielectric(¢ < r < a) for the homogeneous solutions. After
the potential Green'’s functions are obtained, the variguand
H -field Green’s functions can be obtained easily.

Using the MoM, the probe currett{z) is expanded by aset | (43), the slowly convergent modal series of the particular

A. Input Impedance

of basis functions/,, (%) as follows: solutionG > has been replaced by a simple form to improve the
N computational efficiency [6]. As will be shown in Section I,

I(z) = Z I, fa(2). (1) Gy is a smooth function, which converges very quickly and,

n=1 thus,ZH  can be easily calculated in a straightforward manner.

In this paper, the piecewise sinusoidal (PWS) functions are uddewever, special attention is needed in evaluafitlg, because

for f.(z) [6]. The Green’s function ofs, due to az-directed Gp is a singular function af = 7”. As discussed in [6], this
point current is denoted b@f = Gp + Gy, where the sub- problem can be avoided by using the reduced kernel. When PWS
scriptsP and H stand for the particular and homogeneous séurrent modes are used with the reduced kernel, a simple for-
lutions, respectively. The unknown coefficients's are then mula exists [16], which has been documented by Pozar [17].

solved via the following matrix equation: The result is summarized as follows for completeness:
AN C— Alp+3
where mn = G2k p;2 q; (p+3)
ZrZ’nH = // / Im(2)Gp g fn(2')dS'dS 3) (step2) '
eIkt ppgy  (5a)

S0 So
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where

B =1/7?+ (zo + pd)? — q(z + pd) (5b)

zo=|m—nld (5¢)
A()=A(5)=1 (5d)
A(2) = A(4) = —4coskd (5e)
A(3) =2+ 4cos® kd (5f)
E(kB) = Ci(kB) — j8i(5) (50)

andd = 2l/(N + 1) is the PWS mode half-length. In (5g),
Ci(x) and S{z) are cosine and sine integrals, respectively, and
their values can be easily computed by using simple formulas
[18]. Note that the factor of/,/z, is added taz/ so that the
surrounding of the dipole is a dielectric medium of permittivity
e, instead of air, as considered in [16] and [17]. To improve
the accuracy of the solution and yet retain the simplicity, the
two-term equivalent radius. [6], [19] is used in (5a) and (5b).

The elements of the voltage vectdf,,] were discussed in [6]
and are omitted here for brevity. After solving the probe current,
the input impedance of the equivalent problem is obtained easily
from Zy, = 1/3°0_| I,.f,.(0). Dividing this impedance by two
gives the input impedance of the original problem.

B. Radiation Fields

By using the dyadic Green'’s function approach [6], it can
proven that the Green’s function &% due to a:-directed point
current is given by

fo = fo cos @ — Gf; sin §’ (6)
and that ofHy by
G =Gl cost — GIe sin e’ 7

whereG?, GT¢, G"l*, andG']* are obtained from the potential
Green’s functions. After simplification, the Green’s function
G5 andGY* are obtained as foIIow@r > a):
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C. Complex Resonant Frequency

w

f,, = ﬁ = Re(Q)
_ Re(@
@= 2Im(?)

=A(VE +A)T ) 4<e. <80
Q = ByeP2ePaer 6<e. <80

9)

wheresT ands™™ are given in Appendix A. From the Green’s
bfgncnons theEg- and Hy-fields outside the DRA are obtained

(10)

(11)

?n calculating the far fields, the asymptotic expressions
AP (kor) ~ j7+ ek and B (kor) ~ —jH
—jko i 2n +1 used.

(kor) are

The complex resonant frequency for various TE modes can be
obtained by solving'" = 0. In general, the solution, denoted
by 2, is a complex number from which the source-free resonant
frequencyf, andQ-factor are found as follows:

(12a)

(12b)

whereRe(-) andIm(-) denote the real and imaginary parts of
the argument, respectively. To easily determine the resonant fre-
guency and?l-factor, simple formulas are obtained using the
curve-fitting technique. The results are given as follows:

(13)
(14)
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Fig. 2. Resonant frequencies afdfactors of the present and air-gap DRAs 140
as a function of inner radiue @ = 12.5 mm andes, = 9.8. (a) Resonant L *  No conductor [14] R
frequency. (b)Q-factor. 120 | ¢ =0.01 mm ./-“'
w00 | o ¢ =6 mm /'
where
30 80
A= — (4.9848 + 17841t — 731982 + 17.4513t3) i
a(mm) 60 T
Az =0.20261 + 0.1819¢ — 0.3234¢* — 0.1792¢° 40T
Az =0.9968 + 0.005¢ + 0.0069¢* — 0.1376t> 20 r
B; =0.01 x (72.5101 +21.7658t — 180.647t2 0 0 20 20 50 0 100

Dielectric constant &
(b)

By =0.01 x (108,2226 — 4.8076t + 1.1518#% — 79,254t3) Fig.3. Resonantfrequency a@dfactor of the DRA as a function of dielectric
constantz,. for ¢ = 0.01, 6, 8, and10 mm: a« = 12.5 mm. (a) Resonant

B3 =0.01 x (0.5527 1+ 0.2149¢ — 0.8309#2 + 1.3113t3) frequency. (b)9-factor.

+ 164.2913t3)

andt = ¢/a, with 0 < ¢ < 0.6. Within the nominal ranges, the Fig. 3 shows the resonant frequency apdactor as a func-
errors are less than 1.5% and 2.5% foand@, respectively. At tion of dielectric constant,. for ¢ = 0.01, 6,8, and10 mm. Ob-
¢/a = 0.64, which is outside the nominal range, the maximurierye that the results ef— 0(c = 0.01 mm) agree excellently
error of the resonant frequency is less than 2%, but that of iy, those of the previous solution [14] and the validity of the
Q-factor becomes 3.2%. Note that the results are applicablejsent theory is verified. With reference to the figure, the higher
the solid DRA case by putting= 0. Inthis paper, the results areyq gielectric constan,. is, the lower the resonant frequency
compared with those of the air-gap DRA, WhaBE:.,,-mode ¢ ang the higher the)-factor, as expected. The curve-fitting
characteristic equation is given in Appendix B. formulas (13) and (14) were checked and accurate results were
obtained within the nominal ranges.

Fig. 4 shows the convergence checkdgy. Itis seen that the

The complex resonance of the new structure is studied firggal part ofG i requires only a few terms to converge, whereas
The TE,;;-mode resonant frequency arig-factor obtained the imaginary part of/;; requires about 13 terms. In this paper,
by solving the characteristic equatiéi® = 0 are shown in 14 terms were used in the calculations. To check the validity of
Fig. 2, where very good agreement between the direct solutidv@ MoM solution, the solution was first compared with that of
and curve-fitting formulas is obtained. As can be observgti3] for e, — 1 and excellent agreement was obtained. Next,
from Fig. 2, the resonant frequengy. increases with, and we consider another special case:e#: 0. Fig. 5 compares the
the Q-factor decreases with, increasing the conductor raditieory forc = 0.01 mm with the previous solid DRA solution
e. This is because increasing the conductor radius will redulfd. Again, excellent agreement between them is found. Also
the dielectric volume, causing a higher resonant frequency asftbwn in Fig. 5 are the input impedances o= 4 and6 mm.
a lower stored energy. For ease of comparison, the compléis observed that the results ef= 4 and6 mm have higher
frequency of the air gap version is also shown in the figuregsonant frequencies and wider impedance bandwidths, but their
From Fig. 2(a), itis found that the conductor case offers a widegactances shift upward due to the presence of the conductor.
frequency range than the air-gap counterpart. It is observed-ig. 6(a)—(c) displays the radiation patterns of the DRA for
from Fig. 2(b) that the conductor case has a lowgfactor ¢ = 0.01, 4, and6 mm, respectively. The field patterns were
than the air-gap version, as the electromagnetic energy canch&ulated at their respective resonant frequencies. With refer-
stored in an air gap, but cannot be stored in a conductor.  ence to Fig. 6(ajc = 0.01 mm), the F-plane field pattern is

I1l. RESULTS AND DISCUSSIONS
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Fig. 5. Inputimpedance of the DRA as a function of frequency:fer 0.01,
4,and6 mm:a = 12.5 mm,e, = 9.8,b = 8 mm,l = 7.5 mm,r; =
0.63 mm, andrz = 2.0 mm.

nearly omnidirectional, whereas tfi&-plane exhibits a broad-

side mode. When = 4 mm [see Fig. 6(b)], théZ-plane field

pattern is somewhat asymmetric. TEEplane field pattern,

however, remains symmetric, as expected.cAs further in-
creased to 6 mm [see Fig. 6(c)], the asymmetry ofihplane
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0 —
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©

Fig. 6. Radiation patterns of the DRA. The parameters are the same as Fig. 5.
(@) ¢ = 0.01 mm. (b)e =4 mm. (c)c = 6 mm.

field pattern becomes even more obvious, while theplane
field pattern still remains symmetric. From Fig. 6, it is seen that
the maximumE-plane radiation field may occur on the probe
side(¢ = 0°) or the opposite sidép = 180°). A similar phe-
nomenon was observed in [12], though in [12], the displacement
of the dipole was changed instead of the conductor radius. For
ease of comparison, tHé-plane cross-polarized fields are also
shown in the figure (th&’-plane cross-polarized fields were the-
oretically zero). In all the cases, the cross-polarized fields are
extremely weak in the broadside directigh= 0). The level of
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Fig. 7. Inputimpedance of the DRA as a function of frequencyfoe 9.8,

15,and20:a = 12.5 mm,c = 4 mm,b = 8 mm,! = 7.5 mm,r; = 0.63 mm,
andr: = 2.0 mm.

Fig. 9.
forl =6.5,7.5,and8.5 mm:a = 12.5 mm,c =4 mm,s, = 9.8,b = 8 mm,

Input resistance and reactance of the DRA as a function of frequency

ry = 0.63 mm, andr, = 2.0 mm. (a) Input resistance. (b) Input reactance.
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Fig. 8. Radiation patterns of the DRA fer. = 15. Other parameters are the

@

i1

4 5 6 7 & 9

10 11

Probe displacement b (mm)
(b)

same as Fig. 7.

Fig. 10. Peak resistance and resonant frequency as a function of displacement
bforl = 6.5,7.5,and8.5 mm:a = 12.5 mm,¢ = 4 mm, e, = 9.8,

the cross-polarized fields increases wifbut it oscillates as r1 = 0.63 mm, andr, = 2.0 mm. (a) Peak resistance. (b) Resonant frequency.

is varied.

Fig. 7 shows the input impedance of the DRA for= 9.8, .independent ofl. For the probe-loaded resonant frequency,

15, and20 with ¢ = 4 mm. Itis seen that the higher the dielectrl% : : . d
. owever, the value is found at the peak resistance point, with
constant is, the lower the resonant frequency and the narrower

the bandwidth, as expected. Moreover, the peak resistance&_‘e— resistance rigorously calculated using the MoM. Thus, in

. : - is case, the result does vary with The results are, again,
creases with, and the radiated power decreases with, increasin . Lo
s . ..similar to those of the solid DRA [6]. The corresponding field
.. The results are similar to those of the solid DRA [6]. With )
) . : atterns were also obtained. It was found that the effetbof
reference to the figure, using a highgrcauses the reactance t - o
tRe radiation patterns was negligibly small.

shift downward. Fig. 8 shows the radiation patterns of the DR . .
for e, = 15 with ¢ = 4 mm. It is seen that the symmetry of the The effects of the probe displaceméiin the peak resistance

E-plane field pattern is restored by using a highefThis is be- and (probe-loaded) resonant frequency are shown in Fig. 10(a)

) . . and (b), respectively, fof = 6.5, 7.5, and8.5 mm with ¢ =
cause an increase ef will strengthen the DR mode, resulting . . . .
) . ; . 4 mm. With reference to Fig. 10(a), the peak resistance first in-
in the symmetric pattern. The field patterns for = 20 with . S ' .
creases witth until it reaches a maximum value. Itis found that

nghifEn_mlg]eer%;EO ;t?é?;n\?vgél;uﬁisei?;n%c:;t:g Zi/(me:?:teetge longer the probe length is, the higher the peak resistance.
Fig. 9 Zhows the :1 ut impedance of thep DRA tm& 4 rﬁm ig. 10(b) shows that the resonant frequency decreases with in-
9. P P creasingy and!l. The results of Figs. 9 and 10 suggest that the

and! = 6.5, 7.5, and 8.5 mm. As can be observed from . .
the figure, the input impedance increases with, and tI%Obe length and probe displacement can be used to achieve the
' ' '%rrr]]pedance matching.

(probe-loaded) resonant frequency slightly decreases wi
increasingl. (There are two kinds of resonant frequency in

this paper, namely source-free and probe-loaded. The resonant
frequency found by solving{® = 0 is source-free, i.e., the The probe-fed hemispherical DRA with a concentric con-
probe is not taken into account and the solution is, therefodyctor has been studied theoretically in this paper, with the

IV. CONCLUSION
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DRA excited at the broadsidBEl_ML mode. The mogle_—matchir_lg ATM _ j&(/fa)ffr(f)(/foa) _ ﬁ jn(ka)ﬁ;@)(koa) (A11)

method has been used to derive the characteristic equation of ko

the new configuration, from which the source-ffEE;;;-mode T = B (ka)H? (koa) — k HO (ka) B (koa).

resonant frequency an@-factor have been found. For the " ™ " ko T "

engineering purpose, two simple curve-fitting formulas for (A12)

the resonant frequency argtfactor have been presented. To

study the radiation characteristics of the new configuration, the

exact Green’s functions for evaluation of the input impedance APPENDIX B

and radiation patterns have been derived and presented in

computationally efficient forms. The probe current and, hence,Th?T_El"“"mOde (=0, 1,2 _andr =1,2. ) char- .

the input impedance, have been found using the MoM. Usi teristic equation of the hemispherical DRA with an air gap is

the concentric conductor a wider bandwidth and a highg en by

resonant frequency have been obtained. It has been found that

the E-plane field pattern of this configuration is asymmetric,

but the asymmetry can be reduced by using a higher dielectric

constant. The effects of the probe length and probe displa lere

ment on the input resistance and resonant frequency have been R R E o R

examined. It has been found that the impedance matchifig" = {Jé(/foc)Hr(f)(kC) - k—Jn(koC)Hé(Q)(/fC)} AP

can be achieved by varying the probe length and/or the probe Ok

position. - [j;(koc)jn(kc) - = jn(koc)j;(kc)} T¢. (B2)
Finally, it should be mentioned that the present theory is very ko

general and can be applied to other problems, such as to the soli

TE . . . .
DRA and to a wire antenna in the presence of a hemispheri!:%I?Bz_)’ A, andTn_are givenin (AB) and (A9), respectively,
conductor. andc is now the radius of the air gap.

SITE =0 (B1)
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